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ON THE NUMBER OF BOOTSTRAP SIMULATIONS REQUIRED TO

CONSTRUCT A CONFIDENCE INTERVAL

by

Peter Hall
1

University of North Carolina, Chapel Hill 2

Summary. We make two points about the number, B, of bootstrap simulations

needed to construct a percentile-t confidence interval based on an n-sample

from a continuous distribution: (i) The bootstrap's reduction of error of

coverage probability, from O(n" /2 ) to O(nl), is available uniformly in B,

nrovided nominal coverage probability is a multiple of (B+1)- . In fact, this

improvement is available even if the number of simulations is held fixed as n

increases. (ii) In a large sample, the simulated statistic values behave like

random observations from a continuous distribution, unless B increases faster

than any power of sample size. Only if B increases exponentially quickly is

there a detectable effect due to discreteness of the bootstrap statistic.

Key words: Bootstrap, confidence interval, number of simulations.
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1. Introduction rl

-- The purpose of this note is to make two points about the effect of the

number of bootstrap simulations, B, on percentile-t bootstrao confidence

intervals. The first point concerns coverage probability; the second, distance

of the "simulated" critical point from the "true" critical point derived with

B=co. In both cases we-havein mind applications to 4smooth-- statistics, such

as the Studentized mean of a sample drawn from a continuous distribution. - -e

she - indicate<the changes that have to be made if the distribution of the

statistic is not smooth. - / - ?'' '

To make our point about coverage probability, recall that if we conduct

B bootstrap simulations, the resulting statistic values divide the real line

into B+l parts. Therefore in principle, confidence intervals whose critical

points are based on B simulations have coverage probabilities close to nominal

levels b/(B+l), for b=l,...,B. If the sample size is n and B=-, then the

"Edgeworth inversion" effect of the bootstrap argument means that true coverage

probability of a confidence interval whose desired coveraae is a, is actually a +

n ("), and 6n sup 1 n(a)j = 0(n 1) (Hall 1984). This is a notable improve-

ment over the level a + (n-  ) offered by traditional methods. Strikingly,

this improvement is available for any value of B, even for fixed B. In fact,

if * is the worst possible error between true coverage probability andn

nominal coverage probability when only B simulations are used, then 6* < 6n

74,formZy in B. Therefore the worst departure of truc coverage rrobabiZitv

fm-, nominal coverage probability using any finite number of simulations, does

not exceed the worst departure using an infinite number of simuZations.

For example, suppose we wish to construct a one-sided 90% confidence

interval. The smallest value of B we can use is B=9: notice that 90% =9/(9+1).

• " -. -. .. ' .-. - -. - . • ., ..- .-. -. . .. -. ..- .. , . .. -. •-....-.. .-. ." ,.. -; " ."-. .."..', .-. '..'... ,, , ..- .. , ,. , . • . . .\. -1
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The endpoint of the interval would be based on either the smallest or largest

of the 9 simulations, depending on whether the interval was left-handed or

right-handed. If we let n- , but always did only 9 simulations, then the

coveraqe probability of our interval would still be 0.9 + O(n ). So even with

a fixed number of simulations, we improve on the traditional coverage probability

of 0.9 + O(n-I/2.

This property forms a convenient safety-net for the bootstrap algorithm:

if a statistician cannot conduct as many simulations as he would like, he can

be sure that he pays virtually no penalty in terms of accuracy of coverage

probability. The only penalty is in length of confidence interval - if B is

small then the true critical point may stray from its limiting value when B=-,

so that there will be some tendency for confidence intervals to be over-long.

In addition, B does not have to be particularly large before exact coverage

probability agrees with the theoretical limit as B-. For example, if B equals

sample size then the probabilities only disagree at the level O(n2).

We shall investigate these properties in Section 2. As part of our study

we shall give an explicit formula for the second-order term in an expansion of

coverage probability for the case of Studentized mean. That formula makes it

clear that if the sample is actually normally distributed, then even using a

fixed vaZue of B, the coverage probability of a bootstrap confidence interval L

-2
for population mean differs from the nominal level by only O(n').

We shall also investigate the effect of the size of B on critical points.

Remember that the distribution of the bootstrap statistic is discrete. Beran

(1984), amonq others, has oondered the use of smoothing techniques to overcome

discreteness. In Section 3 we shall show that under a very weak smoothness

assumption, even weaker than continuity, the distribution of the simulated

~~~.~~ h*,,*.- . v v
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bootstrap statistic behaves like a continuous distribution with a density

uniformly close to the standard normal density. In fact, the error in this

continuous approximation to the discrete bootstrap distribution is of order

n for all X>O. tie shall show that the number of bootstrap simulations, R, has to

be an exponentially large function of sample size before the discreteness of

the bootstrap distribution becomes apparent.

On the other hand, if the sampling distribution is lattice then it is easily

seen that the atoms of the bootstrap statistic are of order n- 2, and then

it is essential to smooth the distribution of the bootstrap statistic. Our

results on coverage probability have analogues for lattice-valued statistics,

* but it should be remembered that in that case, roundinq error reduces approxi-

mation order from n- to only n

We shall confine attention to one-sided, percentile-t confidence intervals.

The bias-corrected percentile technique (Efron 1979) is suitable only for

two-sided intervals, and in that situation traditional methods, percentile

• -methods and bias-corrected percentile methods all give coverage probabilities

whose errors are of order n-I. There, the advantages of the bootstran cannot

be reported so clearly in terms of coverage probability.

Related work includes that of Beran (1982,1984), Singh (1981) and Babu

and Singh (1983), who have studied large-sample properties of the bootstrap

K alaorithm. The latter two papers are concerned with conditional Edgeworth

- expansions. In Section 2 we shall briefly mention EdQeworth expansions, but

'1 those considered here are unconditional.

-I.
'.' p

•I 9b

*~
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2. Coverage probability

Let 0 = 6(Xi ,•...Xn) be a /--consistent estimator of a parameter 8, based

on a random sample x ={X 1,...Xn1. Let n o (X12 .. *Xn) be a consistent

estimator of the variance of e. We shall consider confidence intervals for 0
" " /2 ^

based on the statistic T = n (e-e)/o.

Let Y"... ,Y be independent and identically distributed, conditional onn
x, with distribution P(Y = Xjlx) = n"I  1 < j < n. The bootstrap statistic

is obtained by using the sample Y {YI""Yn} in place of X. Thus, we consider

* (Y1,.. .Yn), o* -_- -(Y, ... Yn), T* nl/2 (*- e/)*. We may work out the

distribution of T*, conditional on x, to arbitrary accuracy by means of

simulation. Thus, we may define

which is the bootstrap approximation to that point x. such that PtT < x ) = c.

For example, the "optimal" but unattainable interval I0 = [- n'G 2 x0,00)

J. covers 0 with probability a; the interval II -[ - n t' O) covers a with

probability c+O(n 1 )

In practice the value of t is usually itself estimated, by simulation.

Conditional on X, let T,... ,T* be independent copies of T*. Arrange them in

ascending order: Ttl) < ... < T Suppose we select Tlv+I) as our approxi-

mation to t , for a given integer 0 < v < B-1. Let p - P(T* < TJX), and

conditional on x, let N have the binomial Bi(B,p) distribution. In place of
1 -/2T "

i ll, we would use the interval 12 n t - 0+) 0,). Conditional on x,

the chance that 12 covers 0 is

P(T < Ttv+I)IX) = P(at most v out of T*,...,T* are < TIx)- -
P(N < vix) = Z ( p( -P)

r'-'-J=O
+-7=0

IN
+? + , . . ,- ,r r - . ' .' . " . % - ' * ," + , " " • " ' . - .- ' . ' " + ' . ' • . ' , .' . ' - ",, . ' , . ' . ""g

•
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Therefore the exact, unconditional coverage probability of I2 is

a~vB) V B ~ 21
a~vB) (j) J u'(1 U) uBdP(p < u). (.

Had we been able to do an indefinite amount of simulation ,we would have

taken v -. cB as B-, and obtained the interval I. whose coverage probability is

lim a(v,B) =P(p < (x).
B-*

Our aim is to determine how close a(v,B) is to its limit, P(p < a).

Hall (1984) has described expansions for the distribution of p in general

0circumstances. Those results show that p has asymptotically a uniform distri-

bution, and that

P(p <a) at+ n R (a) (2.2)
__ n

where Rn is bounded uniformly in n > l and 0 < ac <1. Define

G(u) = I uj(1~u)B-J.

Ihen by (2.1),
1

a(v,B) = (v+l)(B+1)- + njlf G(u) dRn~) (2.3)

We call (v+l)(B+)- -1 the nominal coverage probability of confidence interval

I2 To simplify the integral in (2.3), let Tr T (v,v) be the solution of

G(T) =V, forO0< v<l1. Then

T1 f0 rG(u) 1 (T (u
n~~d (u) dR(u) o dv= dv JOdRn(u jR (-)dv,

an oa(v,B) (v+l)(B+l) +n J Rn(T)dv. (2.4)

+ n-. . . .
.o n. . . .
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It is clear from (2.4) that if we seek a confidence interval whose

-1
coverage probability is a multiple of (B+l) - , then the worst error we commit

if we simulate only B times is no more than n sup IRn(a) j. In view of (2.2),
n

this is the worst error committed if we simulate an infinite number of times.

In this sense there is nothing to be gained, in terms of coverage probability,

by simulating often. If we are after a 95% interval, and are not overly

concerned about interval length, we might simulate B=19 times and take v=18.

To investigate this phenomenon a little more deeply, we shall examine an

asymptotic formula for R (a). Here it is convenient to concentrate on a specialn

case, such as Studentized mean. There, X = {X1 ,...Xn} is a scalar random sample

from a distribution with mean p and variance 02, and , 0 = X= X.1

-2 Y2. _ . The bootstrap argument may be used to set confidence

2
intervals for P without knowing a . Techniques developed in Hall (1984), although

now requiring much more tedious algebra , give us

Rn(a) =pl(Z )p(z ) + n-1/2 z )z + O(n )

uniformly in a, where D is the standard normal distribution function, V = ',

z is the solution of D(z ) = a,

= " . (1 + 2z2)(z 4 - 18z2 - 39)

1 -6 2 4 2 52
*- (Z () + 2z- 23)-

-19 2 iF23)

X {3 1 (1+2z )(5 z 2z2)5 2  +(z

3 Az (z1 )1

2 2+ -34 { (1+2z2) (5 4 + 22_ 139) + Z2(36z - 23)}

.... . . . . . . ..

. . . . . . . . . . . . .. . . . . . . . . ..3 4 288 36
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and Xi is the standardized jth cumulant; for example, 3 -3 and

X4 = E(X-p) 4 &'4-3. An outline of the argument is given in Appendix (i). For

simlicity, define Qi(a) - i(z)¢(za); then

P(p <a) = + n1IQl(a) + n 3 /2Q2 (a) + O(n-2) (2.5)

uniformly in a. From (2.4) we obtain:

a(vB) = (v+l)(B+1 1 + nJIQl(T)dv + n3/ 2f Q2(T)dv + On -2 ) (2.6)

0 0

uniformly in 0 < v < B-l and B > 1. A little asymptotic analysis based on the

normal approximation to the binomial shows that

T(v,v) =  -1 -1-l/ 1 (l-26)(l+ 2z2) + o(B I ),

where +)B This expansion holds uniformly in values v E (B 2 ,1-B-).

Substituting into (2.6) and noting that fzv = 0, we get:
v

a(v,B) = a' + n'IQ l(a') + n-3/2Q2(a') + 0(n'IB" I + n-2 )

where a' = (v+l)(B+l) . This expansion is virtually identical to (2.5).

If B is chosen so that nominal coverage probability equals a, then a(v,B)

and P(p < a) agree to second order if B is of larger order than square root of

sample size, and to third order if B is of larger order than sample size.

U4

.. ',"",-'-. *., , . *.. ',... . • . - .... -.. - t. - . .. ~ , . * .... • . ... ,.. .....j- . . .** .'".. *.., . ,. ,.. ," ,
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3. Critical Point

For the sake of definiteness we shall concentrate on the Studentized

,X2
mean. We shall impose Cramer's smoothness condition on the pair (XX :

42

lim sup IE exp(isX + itX2)I < 1. (3.1)
NIs+1t1-.

This condition holds for any random variable X whose distribution has a nontrivial

continuous component, and also for certain singular distributions.

Our initial aim is to investigate the smoothness of the distribution of T*,

* conditional on x. Of course, T* has a discrete distribution, with atoms

determined by the sample x. We may artificially smooth that distribution by

adding small, continuous errors to the simulated sample points Y i" For example,

take f > 0 and let Nl* , Nn be independent N(O,n 2 Z) random variables independent

of x and .. (Remember: X= {Xi,...,X n  Y= {Yl.""Yn}.) Set Zi-Yi+N i ,, an "

/2 X)/(n - 72)1/2.

The presence of the smooth perturbations Ni means that conditional on X, T'

has a continuous distribution with density g, say. Given any X > 0 we may

choose f so large that with probability one,

P(IT' - T*I > n'XIx) = 0 (n-') (3.2)

as n-*'". In this sense, the discrete random variable T* may be approximated by

a continuous variable T', with an error of order n " for arbitrarily large X.

.I At first sight this approximation seems spurious, and the reader is justified

in being very skeptical. It seems likely that the density of g will closely

track the atoms of the discrete distribution of T*, and so be quite unsmooth.

After all, the continuous approximation is only supported by minute perturbations

N, which are shrinking to zero at a rate of n" for arbitrarily large t.

..........................................

. : r.-, ,.:..-.%.-". . . ;. -. ".:". . . .;",-" -".... .-.. . .''..... .-. '.,'-..... .''... .. -, ....-.- ... .. ".---.- -...- ,'....... '....."..
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However, the theorem below shows that the density q is actually auite smooth.

In fact, no matter how Zarge the vaZue of Z, g uniformly approximates the

standard normal density t.

Theorem 3.1. Assume condition (3.1), and that E(lXI4+J ) < Po , ,o, n - 0.

Then for each t > 0,

sup 1g(x) - p(x)l 0 (3.3)
-Co~x< c

aZr.ost surelZ' as n-o.

The proof uses standard techniques of Fourier inversion, and will be

outlined in Appendix (ii). The key to this result is the fact that the order

of the approximation in (3.2) is not required to be exponentially small. There

exist constants cn decreasing very rapidly to zero such that, if (3.2) holds for

a continuous variable T' and with cn replacing n , then the approximation at

(3.3) breaks down. In that case the density g does track the atoms of T* too

closely.

Theorem 3.1 implies that the simulated bootstrap values behave like values

from a continuous distribution, provided B is not exponentially larqe. For

example, suppose we conduct B simulations and use T v+I) as our approximation

to the true critical point t . Assume v is chosen so that v = aB + o(R
1 12)

as B-z this is quite reasonable, since we would usually have v = CXB + 0(1).

- . We shall prove below that if B increases no faster than n' for any > > 0, then

as B and n-*o the conditional probability P{B 1/2(T*+I) -t) < xIXl converaes

to the probability that a normal variable with zero mean and variance

-It( -_a)/ 2(z), does not exceed x. Therefore BI/2(T* -t) has a

limiting N(O,&) density, conditional on X and also unconditionally. This

is the limiting distribution of the a'th quantile from a continuous

., - % , ° ' . - ° .- ,- . . . .° . • *. .. .. - ° . . j • - ° . . . . • . ° . • • . , % ° . " - . ° . ° ' . " . . . -
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distribution whose density converges uniformly to the standard normal density.

The result will fail if B increases too quickly, but B has to increase faster

than any power of sample size before the discreteness of the distribution of

T* becoscs apparent. Therefore, provided the sampling distribution is continuous,

we seldom need to smooth before constructing critical points.

To prove the result stated in the previous paragraph, let y t +B' x

and q P(T* < yjx), and observe that with probability one,

P{Bl/ 2 (T~v+l) -t_) < xjx) P(T* <yjx)
- (v+l) -

B q () qi(1-a)B-J 1 -[(v+l-Bq){Bq(l-q)- 1/2]+0 (1), (3.4)

usina the normal approximation to the binomial. If we show that with probability one,

q a + B-I/2X(Z ) + 0 (B-'2), (3.5)

then it will follow that the right-hand side of (3.4) converges almost surely

to D[x,;>(z ){a(l-)}-/ 2], as required. Choose X > 0 so large thatB/n ,

and let T' be as in (3.2). In view of (3.2), result (3.5) will folluw if we

show that for each -oo<x<-, and with probability one,

P(T' < t + B-I/ 2x1X) = a + B-I/2 xO(Z ) + o (B-I/ 2).  (3.6)

L
But Theorem 3.1 implies that

P(T' < t + B-1 /2xjX) P(T' < t IX) + B-1/2 x(t + o (B'I/2) (3.7)

It also follows from the theorem, and from the definition of t, that

P(T < t_ JX) < P(T' < t - 2B- l1X) + 0 (B-l )

< P(T < t - B x) + o (B" I 2 ) < a + o (B/ 2),

" o.- . * . .°..

. .. £',. . . . .• ,. . . . • -. " . °, . * .*" ." w • *' *' * .. . " .* . ..- .. . . . . .. , - ° - . . °
o~~.°. - . . .. .%-. . ..- ... • . .S - * ° - * .% ° p . .. ° • * .7"o -. " - • ". -. °-
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and likewise P(T' < tIx) > a + o (B'I2). Therefore P(T' < t_ x) = c + o (B1 /2).

Result (3.6) is now immediate from (3.7).

Appendix (i): Verification of (2.5)(1)

the proof is similar to Hall (1984), although with considerably qreater

complexity. The only smoothness condition reouired is (3.1). To identify

functions Q, and Q2' let T be the Studentized mean and let 71i72, 3 be polynomials

defined by the following inverse Cornish-Fisher expansion:

P{T < x + n-/2l(x) + n'l (x) + n-3/2i3(x)} = (x)

Formulae may be derived using results of Geary (1947); for example,

22(x) (4z2 1) (1/12) 4(z 2-3) + (1/4)(z2 +)}.

Let I. denote the version of 7j in which X is replaced by its samnle estimate
?j. for example, X4 = n 4 -1 yn s are obtainable

X ( i - 3. The functions QlQ 2 aeotial

from the relation

a i-a n1T1(z2 + n3/2 -

{+n+ 2 a n 3(Z) P(p < a) + O(n -2 )
(A.1)

a + n-IQ,(a) + n-3/2 Q2( )  O(n-).

First find the cumulants of the random variable

S W T - n-I/2 l (z  ) - n-II2(z ) - n3/2 a3(za )

to order n'2 ; then use the cumulants to obtain an Edaeworth expansion of

P{S(a) < x} to order n 2 ; and finally set x =z to obtain formula (2.5)

via (A.l).

()For easy comparison with classical literature, we assume sample variance has

divisor n-l, not n. Notice that (2.5) is invariant under changes of scale of T.

1.*.*:-* *.*,*
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Appendix (ii): Proof of Theorem 3.1.

Without loss of generality, E(X)=O. Let Wi  i-, w2:E(W Iv),

U. l w i W-w2), = n-/2 1Ui , Z = var(Uljx), f be the density of U

conditional on x, fo be the conditional density of the bivariate normal

distribution with zero mean and covariance Z, and XXo be the characteristic

functions of ffo, respectively. Notice that

g(x)= {(1+n-I/'v)(l+n- x 2) 3I2 w 3f{wu(x,v),w 2v}dv, (A.2)

n

where u(x,v) x{(l+n-I 2v)(l+n-lx2 )-111/2. Define q0 by (A.2) but with fo
a.s.

replacina f. It is easily proved that sup Igo-¢i 0, and so it suffices
a.s.

to show sup Ig-g 1 0. For this, we may show
0

sup ( + ly12 )If(y) - f a

That result follows by Fourier inversion if we prove that for nonneqative
a.s.

integer vectors y with y y2 < 2, flDY(X-Xo)1 0 0, where D is

the differential operator. We treat only y = O; other cases are similar.

Characteristic function manipulations common to estimates of rates of

converoence show that for some small n > 0, and for all sufficiently large n,

sup Ixn(t) - Xo(tle < )n -n

ItI<nn
1 /2

with probability one. Therefore it suffices to prove

( a.s.
J 1>n/2 [xn(t~ldt 0 0. (A.2)

Notice that if N is standard normal, IE exp(isN + itN2)15 is integrable in

(s,t). From this fact, taking n > 5, and letting n be the empiric character-

2
istic function of the sample of pairs (Xi X 1 < i < n, we see that the left,ii ,  

- - ,w e httelf

.. ... ... . . .,. . .. . .. ..L



13

side of (A.2) is dominated by

const. n4  sup 2 n(t 2t2 , t2 )n 5

ti +t2>n~a.s.

for all sufficiently large n. Finally observe that sup n - E n{ 1 0, and

invoke condition (3.1).
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